Mark Kennedy State Grazinglands Specialist (Retired) Kennedy Grassland Services, LLC Houston, MO

With MiG the end product is greater than the sum of all the parts

Overview

Carrying Capacity
 Stock Density
 Paddock Size

 Permanent

Stripgrazing

Some Useful Definitions

- Stocking rate: The number of animals or animal liveweight assigned to a grazing unit on a seasonal basis.
- Carrying capacity: The stocking rate that provides a target level of performance while maintaining the integrity of the resource base.

Carrying capacity of pasture is determined by four factors

Carrying capacity

– Example:

Stocker operation(buying 500# selling 800#)
200 day seasonal grazing (April 1 - Oct. 20)
12 paddock system (2-3 day grazing period)
8000 lb. total forage production (from history/experience or soil survey)

If: Forage production = 8000 lb/acre/year Seasonal utilization = 65 % Daily intake = 3% (.03 lb forage/lb liveweight) Length of grazing season = 200 days

Then

Carrying = 8000 lb/acre X .65 Capacity .03 lb forage/lb liveweight X 200 days

= 867 lb liveweight / acre

867 lbs. per acre/500 lb = 1.73 steers/ac – Can we stock 1.73 steers/ac initially?

Remember, we hope they grow!

If we expect them to grow to 800 lb. then
 800 + 500 = 1300/2 = 650 (avg wt)
 - 867/650 = 1.33 steers/ac

Cow/Calf Example

8000 lb/ac X .35

.03 lb forage/lb liveweight X 365 days = 256 lb liveweight/ac or 4.68 ac/cow Carrying Capacity =

> 8000 lb/acre X .50 .03 lb forage/lb liveweight X 365 days

> = 365 lb liveweight / ac or 3.29 ac/cow

Carrying capacity of pasture is determined by four factors

Carrying capacityStock density

Some Useful Definitions

- Stocking rate: The number of animals or animal liveweight assigned to a grazing unit on a seasonal basis.
- Stock density: The number of animals or animal liveweight assigned to a specific pasture area for a specific time period.
 - Stock density is a powerful tool to manage grassland resources (improve utilization, reduce spot grazing/selectivity, control competition, manure distribution, produce seed/soil contact, open up a sward for overseeding)

Stock density of pasture is determined by four factors

Stock density of pasture is determined by four factors (cont.)

Available forage (Get out the Grazing Stick)

- How much forage is available on this acre <u>this day</u>
- Can be estimated from height
- If too little, intake will be restricted
- If too much, quality may be low/intake restricted

Dry matter yield per acre-inch for various pasture types

Stand Density

Forage	60-75%	75-90%	>90%
Tall Fescue + N	250-350	350-450	450-550
Tall Fescue + legumes	200-300	300-400	400-500
Bromegrass + legumes	150-250	250-350	350-450
Orchardgrass+legumes	100-200	200-300	300-400
Bluegrass+ whiteclover	150-250	300-400	500-600
Mixed pasture	200-300	300-400	400-500
Bermudagrass	100-250	250-400	400-550
Caucasian Bluestem	100-200	200-300	300-400
Native Warm Season Grasses	50-100	100-200	200-300
Red Clover/Alfalfa	150-200	200-250	250-300

Stock density of pasture is determined by four factors (cont.)

Stock density of pasture is determined by four factors (cont.)

Temporal utilization rate

- Take half, leave half
- Utilization greater than 50% stops root growth
- Length of grazing period is critical factor
- As utilization increases, intake decreases

Corresponding Root Growth

% Leaf Removed	% Root Growth Stopped
10	0
20	0
30	0
40	0
50	2 to 4
60	50
70	78
80	100
90	100

Stock density of pasture is determined by four factors (cont.)

 Forage Intake Rate in % of body weight Dry Cow 2 - 2.5% Lactating Cow 3 - 4% Dairy Cow 2.5 - 3.5% + grain Stockers 2.5 - 3.5% Sheep 3.5 - 4% Horse 2.5 - 4%

Stock density of pasture is determined by four factors (cont.)

Stock density of pasture is determined by four factors (cont.)

Length of the grazing period

- Stock density increases with shorter grazing periods
- Animals are concentrated on smaller areas for a shorter amount of time
- Selectivity decreases
- Utilization increases
- Animal intake increases with shorter grazing periods
- Animals with high nutrient requirements should be moved more often

Grazing period Needs

Economic potential of grazing enterprises $0.5 - 1 \, day$ Pasture-based dairy – Dairy replacements 1-2 days 1 - 3 days– Beef stockers Sheep and goats 2-5 days - Cow-calf 2-5 days •

If: Available forage = 2400 lb/acre (8" @ 300 lb./in)
Temporal utilization = 50 %
Daily intake = 3% (.03 lb forage/lb liveweight)
Length of grazing period = 1 days

Then

Stock = 2400 lb/acre X .50 Density .03 lb forage/lb liveweight X 1 days

= 40,000 lb liveweight / acre

40,000 lb liveweight/ac/ if moving <u>daily</u> or
20,000 lb /ac if moving every 2 days
13,333 lb /ac if moving every 3 days

Stock Density

Stock Density	50,000 lbs Beef (40 cows 10 acres = 5000 lbs live weight / acre	
	50,000 lbs Beef (40 cows)	
Stock Density	1 acre = 50,000 lbs live weight / acre	
Stock	50,000 lbs Beef (40 cows) 1/4 acre	
Density	= 200,000 lbs	

 Carrying capacity
 Stock density
 Size of paddock
 Ac = <u>Total Liveweight (lb)</u> Stock Density (lb/A) X Grazing Period (days)

Size of paddock:

If we have 100 steers weighing 650 lb, and stock density of 40,000 lb/A

Then....

100 hd X 650 lb/hd = 65,000 lb in herd 65,000 lb / 40,000 lb/acre = 1.62 acre if moving daily, 2 days = 3.24 acres

Paddock Size – Permanent Paddocks

Ac. = <u>Daily Intake X # Head X Grazing Period</u> Forage Available X Utilization Rate

Intake = $.03 \times 1200 = 36 \text{ lbs/hd/day}$

Ac = <u>36 X 40 X 5</u> = <u>7200</u> = **6.0** acre 2400 X 50% 1200

Density = 1200 x 40/6 = 8000 lb/ac

Grazier's Arithmetic Stockpiling/Stripgrazing

VERY practical example:
 Figure paddock (or strip) size needed for a herd of dry beef cows on stockpiled fescue

Ac. = <u>Daily Intake X # Head X Grazing Period</u> Forage Available X Utilization Rate

How much will they eat?

1200 lb dry cow needs?

 Forage Intake Rate in % of body weight Dry Cow 2 - 2.5% Lactating Cow 3 - 4% Dairy Cow 2.5 - 3.5% + grain Stockers 2.5 - 3.5% Sheep 3.5 - 4% Horse 2.5 - 4%

How much will they eat?

- 1200 lb dry cow needs 2.5% of body weight per day
 1200 * 2.5% = 30 lb
- How many head? Use 40
- How long is the grazing period? Use 2 days

How much forage is available?

Tall fescue + NAverage height is 10 inches

Forage	60-75%	7 <u>5-90%</u>	>90%
Tall Fescue + N	250-350	350-450	450-550
Tall Fescue + legumes	200-300	300-400	400-500
Bromegrass + legumes	150-250	250-350	350-450
Orchardgrass+legumes	100-200	200-300	300-400
Bluegrass+ whiteclover	150-250	300-400	500-600
Mixed pasture	200-300	300-400	400-500
Bermudagrass	100-250	250-400	400-550
Caucasian Bluestem	100-200	200-300	300-400
Native Warm Season Grasses	50-100	100-200	200-300
Red Clover/Alfalfa	150-200	200-250	250-300

How much forage is available?
Tall fescue + N
Average height is 10 inches
At 400 lb/in. we have 4,000 lb.
What is the temporal utilization rate?

Grazing Efficiency

Grazing Efficiency - Total season Utilization # Grazing Pastures Period Rate 30% 1 pasture Continuous 4 pasture 7-10 days 35% 8 pasture 3-5 days 50% 2-4 days 12 pasture 65% 70 + % 1-2 days 24 pasture

How much forage is available? Tall fescue + N Average height is 10 inches At 400 lb/in. we have 4,000 lb. What is the utilization rate? Use 70 %

Ac. = <u>Daily Intake X # Head X Grazing Period</u> Forage Available X Utilization Rate

Ac = $30 \times 40 \times 2 = 2400 = .86$ acre 4000 × 70% 2800

You can develop a "shortcut" for your operation <u>AFTER</u> you've gone through this calculation.

Carrying Capacity
 Stock Density
 Paddock Size

 Stockpiling

 Paddock Numbers

Grazier's Arithmetic: How many paddocks do I need? It depends length of grazing period desired producer goals, livestock performance length of rest period needed Changes seasonally

rest period
grazing period + # herds = paddock #

Grazier's Arithmetic: Grazing period Needs

Plant based:

- 2 5 days fast growth
- 5 9 days moderate
- 9 12 slow growth

Animal performance:

- .5 1 day dairy cows
- 1 2 days growing/fattening
- 2 5 days lactating beef cattle, sheep, horses
- 4 7 days dry animals

Rest Period Needs: Grazing Season

Grazier's Arithmetic: How many paddocks do I need? Paddock Number = rest period grazing period + 1 Ex: 20 day rest period - spring +1=83 day grazing period 40 day rest period - summer 3 day grazing period +1 = 14

Grazier's Arithmetic: How many paddocks do I need? Or: <u>40 day rest period</u> + 1 = 9 5 day grazing period

Fixed/Flexible System Design

- 9 paddock fixed system
- Flexible paddock numbers in hayfields and/or warm season grass
- Water available in every paddock
- Alleyway for ease of livestock movement
- Very flexible, workable system

Optimum Paddock #'s based on Livestock Type (Rule of Thumb)

Livestock type	Grazing Period (Days)	Paddock #
Dairy & Beef Finishing	0.5 – 1	20 - 80
Dairy Heifer & Stockers	1 - 3	16 - 40
Cow/calf, Sheep, Goats, Horses	2 - 5	8 - 16

Stockpiling:

The managed accumulation of new growth

Keys to Success

Growing the stockpiled fescue
 Proper utilization of stockpile

Stockpiling Recipe

Start with fescue pastures that have 3 to 6 inches of leaf in mid to late August or 60 to 90 days prior to the end of the growing season.

- Apply 40 60 lbs. N
- Defer grazing until growth stops (late Nov to early Dec.) or until needed
- Utilize all other pastures in rotation for fall grazing until fully utilized and grass growth stops

Impact of rate and timing of nitrogen fertilization on dry matter yield of stockpiled tall fescue.

Yield (lbs/A)

How much can you afford to stockpile?

- 1000 lb. cow eats 10,950 lbs./year
- 50% utilization 21,900 lbs. needed on offer
- 7000 lb./ac total production
- 3.2 acres needed per cow per year
 - 1.6 acres needed/cow April June
 - 3.2 acres needed/cow July August
 - 2.0 acres needed Sept. Nov
 - -1-1.2 acres left to stockpile
 - 4000 lb. x .70 = 2800/30 lb. intake = 93 cow days grazing

Utilizing the stockpiled forage

Move polywire to expose 1 to 3 days worth of grazing at a time ... greatly increases utilization and preserves quality..

Calculate forage available per acre, figure daily herd intake requirement, factor in 70% utilization if moving every 2 days, calculate size strip required

Economics - average conditions

- > 26# per cow per day
- \$70 per ton good grass hay
- \$.58 per pound for nitrogen @ 60#/ac=\$34.80/ac
- 60# should give 10" growth @ 300# per inch = 3000#/ac

Haying

> \$70 / 2000# = \$.035 per pound

\$.035 x 26# = \$.91 per cow per day

– if you factor in a 20% wastage this bring the cost up to \$1.09 per cow per day

Stockpile Fescue, Stripgrazing

- 3000# @ 70% utilization = 2100#
- \$34.80/ac / 2100 = \$.016 per pound
- \$.016 x 26# = \$.43 per cow per day
- 2100# / 26# = 80 aud/ac

Seasonal Costs

Haying: \$.91 - 1.09/day x 80 days = \$73 - \$87

 Stockpile + Stripgraze: .43/day x 80 days = \$34.40
 \$38.60 - 52.60/cow savings/year

Stockpiled Tall Fescue Crude Protein

Stockpiled Tall Fescue D O M

Ergovaline concentration in stockpiled, endophyte-infected tall fescue.

Advantages of Stockpile Grazing

Reduced Labor
 Reduced Costs
 Reduced Time

 Putting up hay and feeding out hay

 High Quality Forage

 Usually better than grass hay

Advantages

Hay cost/day = \$0.78 Stockpile/stripgrazed cost/day = \$0.33 \$0.45/cow/day difference 100 cow herd = \$45/day difference 2 day strips = \$90 cost savings If it took 30 minutes every other day to move the wire then you're getting paid \$180/hour for your labor/management

